Input Link Ring Buffer Processing Module

نویسندگان

  • Govindan Ravindran
  • Michael Stumm
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact Procedural Implementation in DSP Software Synthesis Through Recursive Graph Decomposition

Synthesis of digital signal processing (DSP) software from dataflowbased formal models is an effective approach for tackling the complexity of modern DSP applications. In this paper, an efficient method is proposed for applying subroutine call instantiation of module functionality when synthesizing embedded software from a dataflow specification. The technique is based on a novel recursive deco...

متن کامل

STUMM : A COMPARISON OF BLOCKING AND NON - BLOCKING NETWORKS 3 Output Link Input Link Ring Buffer Output

SUMMARY This paper presents the results of a simulation study of blocking and non-blocking switching for hierarchical ring networks. The switching techniques include wormhole, virtual cut-through, and slotted ring. We conclude that slotted ring network performs better than the more popular wormhole and virtual cut-through networks. We also show that the size of the node buuers is an important p...

متن کامل

RAVINDRAN and STUMM : A COMPARISON OF BLOCKING AND NON - BLOCKING NETWORKS 3 Output Link Input Link Ring Buffer Output

SUMMARY This paper presents the results of a simulation study of blocking and non-blocking switching for hierarchical ring networks. The switching techniques include wormhole, virtual cut-through, and slotted ring. We conclude that slotted ring network performs better than the more popular wormhole and virtual cut-through networks. We also show that the size of the node buuers is an important p...

متن کامل

$n$-cocoherent rings‎, ‎$n$-cosemihereditary rings and $n$-V-rings

 Let $R$ be a ring‎, ‎and let $n‎, ‎d$ be non-negative integers‎. ‎A right $R$-module $M$ is called $(n‎, ‎d)$-projective if $Ext^{d+1}_R(M‎, ‎A)=0$ for every $n$-copresented right $R$-module $A$‎. ‎$R$ is called right $n$-cocoherent if every $n$-copresented right $R$-module is $(n+1)$-coprese-nted‎, ‎it is called a right co-$(n,d)$-ring if every right $R$-module is $(n‎, ‎d)$-projective‎. ‎$R$...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009